Restoring Trust and Owner Control to General Purpose Computing

Timothy Pearson tpearson@raptorengineering.com

Raptor Engineering, LLC https://www.raptorengineering.com

- Purpose
 - Highlight critical problems inherent in x86
 - Generate interest in owner controlled computing
 - Introduce viable x86 alternatives
 - Provide information about Talos[™]

• What is x86?

- A family of ISAs

- Backward-compatible
- Derived from the Intel® 8086
- Anything past the 80486 is Intel®-controlled

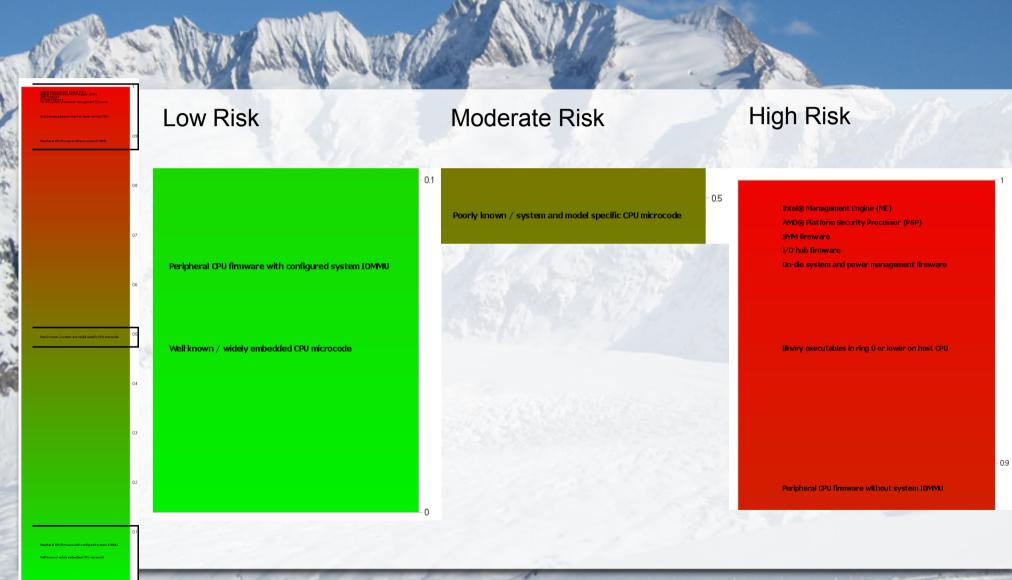
- x86 and Owner Control
 - Machine owners license firmware
 - Licensed firmware implements antifeatures
 - Hardware and software DRM
 - PAVP
 - Licensed firmware cannot be replaced
 - Boot Guard
 - Management Engine
 - Platform Security Processor

- x86 and Owner Control (cont.)
 - Licensed firmware has full system access
 - Essentially executes in Ring -3
 - High security and privacy risk
 - Licensed firmware is network enabled
 - May communicate with manufacturer
 - May communicate with third parties
 - Becomes a remote hacking risk

- x86 and Owner Control (cont.)
 - Licensed firmware is typically restricted
 - Unable to independently audit
 - Bottom Line
 - Owner control is effectively absent on x86
 - Restoring owner control is not possible
 - x86 ISA is never licensed by Intel®
 - Lack of competition means no alternative, performant x86 platforms will ever exist!

- Why is Owner Control important?
 - Freedom
 - Flexibility
 - Reliability
 - Privacy
 - Security
 - Continuance
 - Competition / multi-source capability

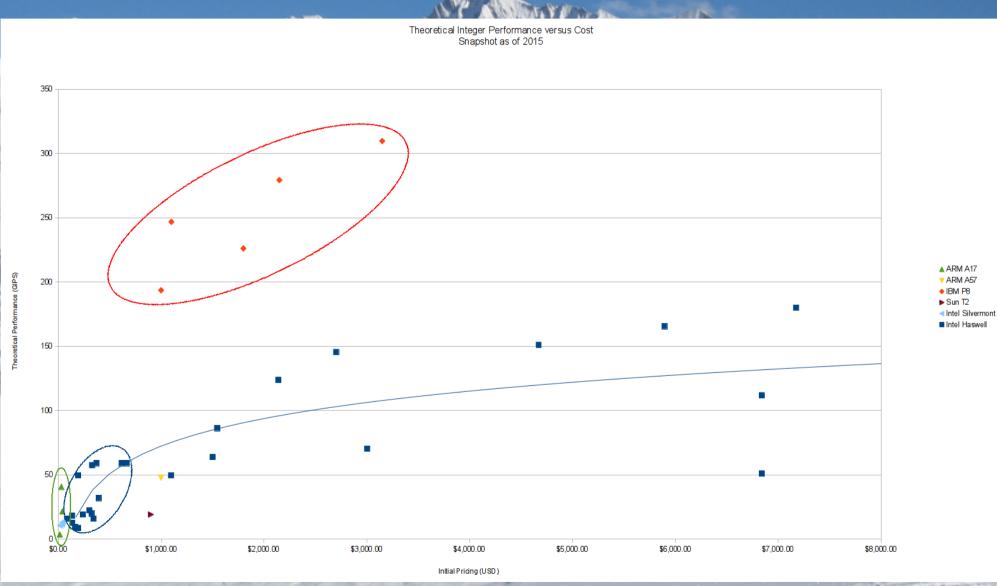
- What about other closed firmware components?
 - Host CPU control is critical
 - Must also control any CPUs with equal or higher privilege level
 - Various host isolation mechanisms available
 - IOMMU / SMMU / TCE / DVMA
 - DMA-incapable busses (USB 1.0 / 2.0)
 - CPU and isolation silicon must be trustworthy!


- CPU microcode
 - Contentious topic
 - Refers to two distinct firmware components
 - Traditional horizontal / vertical microcode
 - Firmware for embedded on-die "parasite" CPU(s)
 - Traditional microcode
 - Shuttles data to / from internal logic blocks
 - Controls logic sequencing
 - Limited risk

- CPU microcode (cont.)
 - On-die CPU firmware
 - No different than any other highly privileged CPU
 - Firmware typically has full system access
 - RAM
 - Persistent storage
 - External peripherals (network, keyboard, display)
 - Sufficient hardware resources to execute malware
 - Firmware typically written in a high level language
 - Potentially high risk with closed firmware source!

Closed Firmware Risk, Relative

- What can be done to move away from x86?
 - Use a different ISA!
 - This is feasible for most libre software users
 - x86 inertia largely stems from proprietary lock-in
 - Many non-x86 ISAs to choose from
 - ARM
 - MIPS
 - POWER
 - RISC


- ISA overview
 - ISA alone rarely dictates performance limits
 - Each ISA is targeted at specific market(s)
 - Reference designs typically set performance
 - Developing processors costs money
 - The ISA creator needs to fund further R&D
 - The CPU manufacturer also needs to fund R&D
 - x86 and the SPARC T2 are outliers in openness
 - Long-term manufacturer support is vital

- Processor market segmentation
 - Consumer x86 positioned in unprofitable region
 - Requires extreme sales volume
 - Not only selling silicon; also licensing software
 - Software lock-in / rental model driving repeat sales
 - Laptop market most affected
 - No challengers apparent on mid to high end
 - ARM only available on low end / crippled laptops
 - Main competitors positioned differently

Architecture Market Segmentation

- Choosing an ISA
 - Avoid vendor lock-in
 - Choose a licensable ISA
 - Make sure the license allows modification
 - Verify suitability for general purpose computing
 - ISAs linked to cheap CPUs can perform poorly
 - Many cheap CPUs use limited cache hierarchy
 - Many cheap CPUs trim features needed for GPC
 - Some CPUs still require signed firmware

- Libre Computing ISA Candidates
 - Two architectures most viable
 - ARM
 - Extremely popular
 - Diverse; many vendors own core licenses
 - Suffers from poor design decisions
 - Cheap, but relatively slow
 - POWER
 - Extremely fast, competitive with high-end x86
 - Feature rich but expensive
 - OpenPOWER not yet as diverse as ARM

• ARM

- Midrange locked, libre capable on high/low end

- High end
 - Mainly offered by NXP (formerly Freescale)
 - Has PCIe, ECC, SATA, USB3, hypervisor, SMP
 - Cache structure limits GPC performance
 - Expensive
- Low end
 - Offered by RockChip, Allwinner, etc.
 - No PCIe, no ECC, no SATA, no hypervisor
 - SoC support spotty in upstream u-boot / Linux

- ARM (cont.)
 - First non-x86 architecture to gain traction
 - Leverages typical x86 weaknesses
 - Simpler design (less power, silicon)
 - Highly customizable SoC designs
 - Multi-sourced w/ similar features across vendors
 - Licensable
 - Primarily targets mobile and network markets
 - Hardwired microsequencer

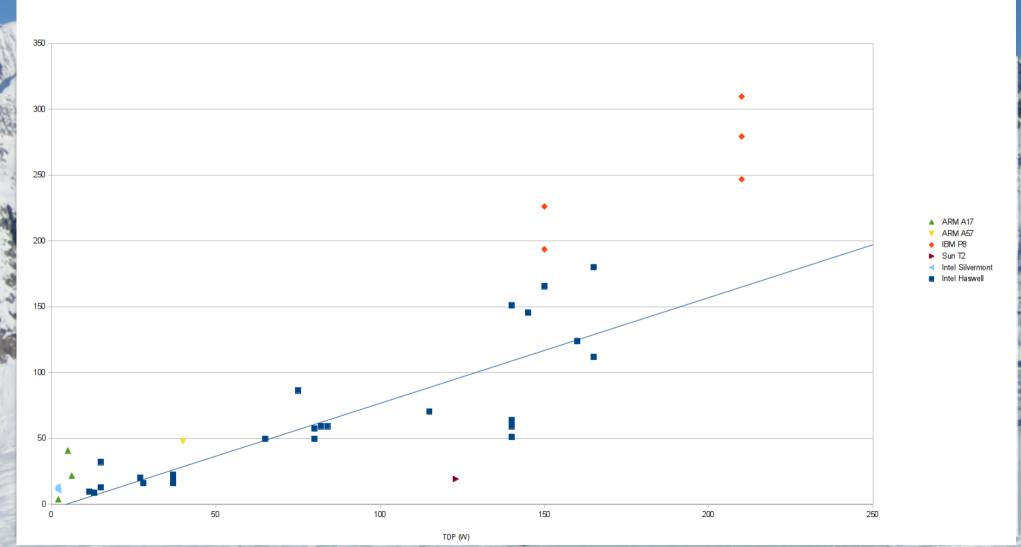
- Example owner-controllable ARM64 system
- NXP LS2085A NPU
 - 8 A57 cores (4 SMP clusters w/ L2 cache)
 - Standard DDR4 DIMMs, ECC, SMMU, PCIe
 - No L3 cache
 - RDB uses odd form factor BTX?
 - DPAA2 requires proprietary firmware
 - Removing firmware disables integrated NICs

NXP LS2085ARDB NPU

- POWER
 - Main focus of presentation
 - ONLY libre-capable core on par with x86 cores
 - Low- to mid-range libre capable (OpenPOWER)
 - High end locked
 - Mainly aimed at ultra-high-reliability use
 - x86 servers do not offer similar capabilities
 - Raw performance comparable to OpenPOWER

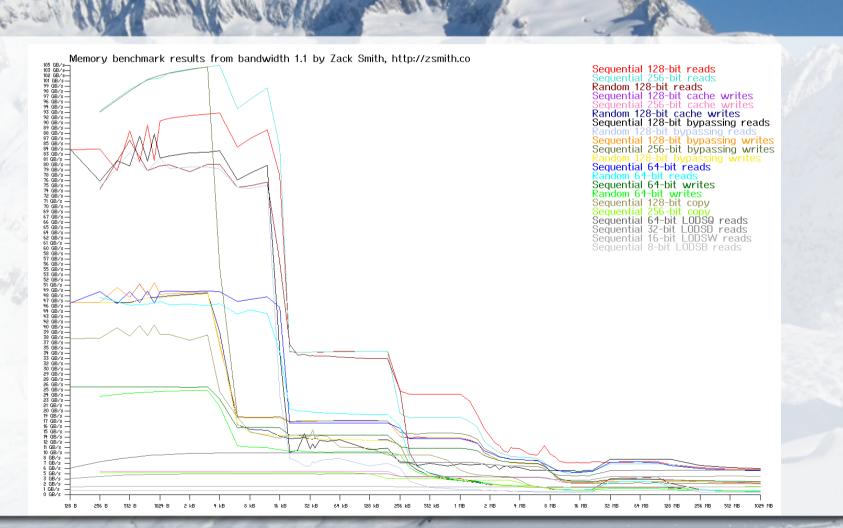
- POWER (cont.)
 - Traces roots back to RS/6000
 - Multiple firmware components, on-die CPUs
 - Source available / modifiable on OpenPOWER
 - Traditional microcode
 - Unlike x86, can be read back out and verified
 - Microcode not lost on power off / reset
 - Can be locked in hardware to prevent updates

- POWER (cont.)
 - Historically big endian (BE)
 - Hardware little endian support as of P8
 - Allows non-endian-aware code to function
 - Eases porting burden
 - Bi-endian capable
 - Booted kernel sets endianness
 - Bare metal firmware can boot BE or LE
 - KVM VM kernels can select either endianness


- POWER (cont.)
 - OpenPOWER "Turismo"
 - Single Chip Module (SCM)
 - Up to 12 "chiplets" (core, L2, and sharable L3)
 - Expansive cache hierarchy
 - L3 and L4 cache
 - eDRAM allows large caches
 - Large die size, high TDP
 - TDP in line with similarly performant CPUs

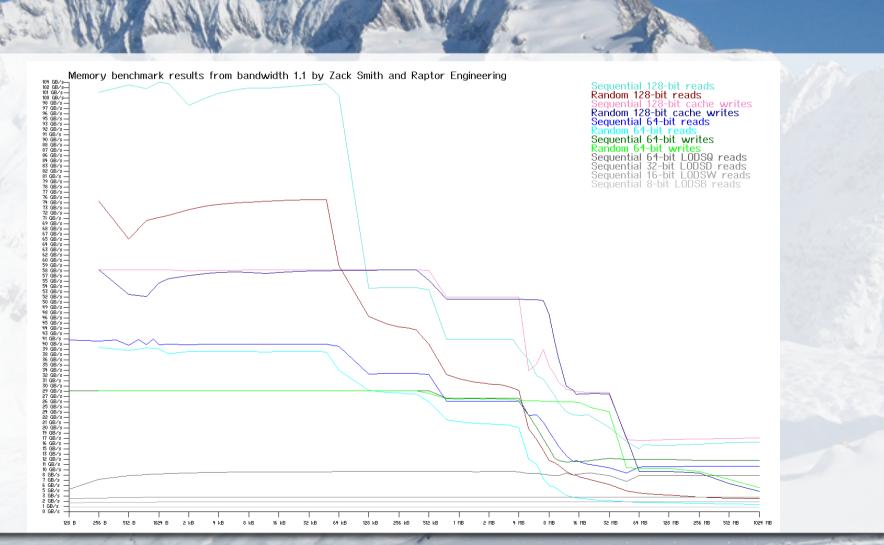
Theoretical Performance Versus TDP

Theoretical Integer Performance versus TDP Snapshot as of 2015


• POWER (cont.)

High Bandwidth

- Higher memory read / write bandwidth vs. x86
- Higher I/O bandwidth than most other offerings
- Low-latency CAPI interface for accelerators
- Outperforms most (all?) competing, ownercontrollable machines in bandwidth capacity



Opteron[™] 6328 Memory Bandwidth

POWER8 Memory Bandwidth

- POWER (cont.)
 - Significant investment in Linux ecosystem
 - Debian archive coverage > 95%!
 - Full KVM support including TCE
 - Unprecendented level of firmware access
 - No regions cryptographically locked by hardware
 - OCC firmware is open source
 - Hardware capable of ChromeOS security model
 - Keeps full control in hands of machine owner

• POWER (cont.)

- Hardware Support

- LE mode means most open drivers work OOB
- Closed drivers must be recompiled by vendor
- Industry-standard high-speed interfaces
 - PCle
 - USB 3.0
- Special-purpose interfaces
 - CAPI
- In practice, most hardware works without hassle

- POWER (cont.)
 - Software Support
 - Extensive support for open Linux applications
 - Some support for closed Linux applications
 - IBM Java
 - NVIDIA CUDA
 - Notable Exceptions
 - Chromium (lack of Google interest circa 2014)
 - Flash (becoming largely irrelevant)
 - VirtualBox (x86 only, use KVM / QEMU instead)

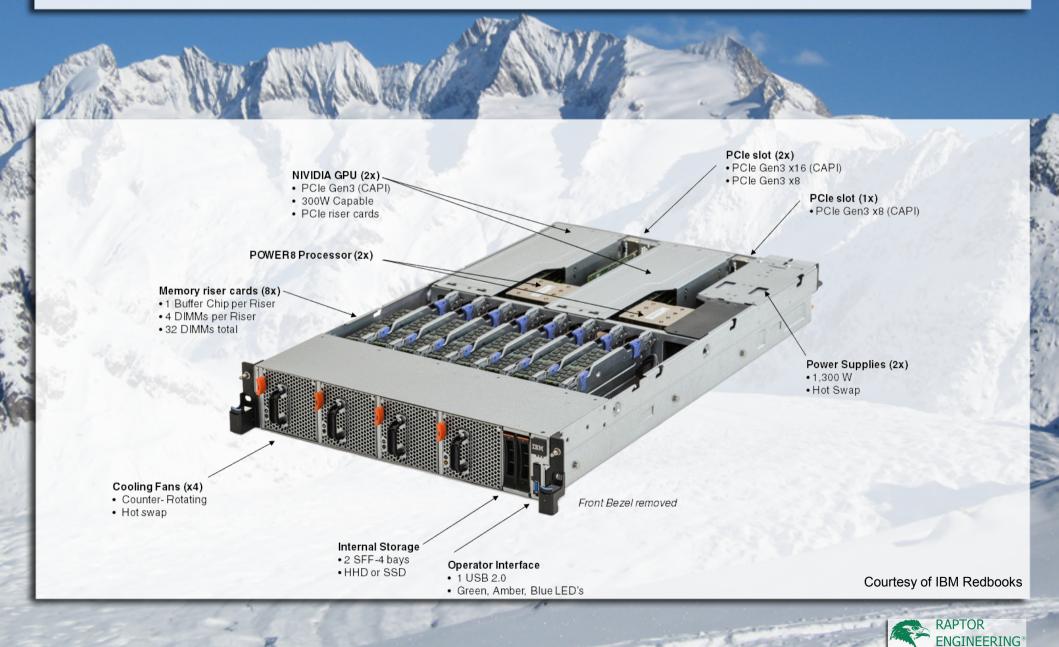
- POWER (cont.)
 - Software Support (cont.)
 - 3D functionality verified w/ Radeon 290X
 - Engineering Tools
 - Kicad
 - FreeCAD
 - 3D Modelling
 - Blender
 - Games
 - Xonotic
 - No perceivable difference from x86!

- POWER Future Direction
 - Next major revision will be POWER9
 - Due late 2017
 - New socket, different RAM architecture
 - Even more open than POWER8!
 - Fully open microcode and toolchain expected
 - Adopting open P8 systems helps ensure P9 later
 - Secure Boot
 - Owner control central to IBM Secure Boot model

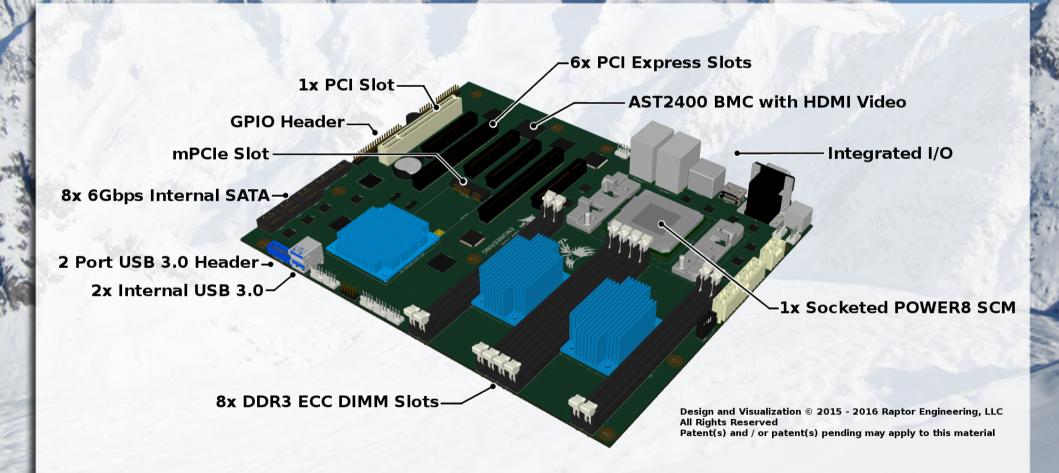
- OpenPOWER Firmware
 - OCC
 - On-chip power management / thermal control
 - Hostboot
 - Low-level startup
 - Skiboot
 - OPAL runtime services
 - Petitboot
 - User interaction / final bootloader

- OpenPOWER Firmware (cont.)
 - GRUB (on disk / distro provided)
 - IEEE 1275-1994
 - Coreboot port in progress
 - Initial target: QEMU
 - Initial toolchain and bootblock ready
 - Needs attention / more developers
 - P8 starts in BE mode, complicating port

- OpenPOWER Firmware (cont.)
 - Closed components
 - Microcode, including Self Boot Engine
 - Roughly equivalent to FPGA bitstream
 - No direct equivalent in x86 or ARM worlds
 - Not cryptographically checked by hardware
 - Stored on processor module
 - Written with external programmer; not loaded by host
 - IBM may open these components for audit on P8
 - P8 toolchain unreleased due to size / complexity
 - Will be fully open for P9


- POWER Availability
 - Existing products targeted at server market
 - 1 and 2 CPU systems available for rack mount
 - Bare ATX boards not available
 - Low-end machines tend to be proprietary
 - Tyan
 - Certain IBM servers designed by third parties
 - No firmware source, no schematics, no support
 - Recycled proprietary firmware used for BMC, etc.
 - High-end machines are open, but expensive

- Example owner-controllable POWER8 system
- IBM S822LC
 - 2 POWER8 190W CPUs
 - Unique RAM backplane system w/ Centaurs
 - Numerous PCIe slots
 - Ships with proprietary BMC firmware
 - Open firmware under development
 - Basic functionality available under open firmware


IBM S822LC Commercial Server

- Raptor Engineering's Talos[™] system
 - Standard ATX-compatible mainboard
 - Specifically targeted at workstation market
 - 1 POWER8 CPU 130W stock, 190W optional
 - Up to 256GB DDR3 w/ ECC
 - High PCIe lane count
 - SATA, USB 3.0, etc.
 - Fully open firmware
 - Includes schematics for most hardware!

TALOS

- Raptor Engineering's Talos[™] system (cont.)
 - Unique Features
 - Open toolchain FPGAs for signal routing
 - Programming headers for firmware development
 - Will ship with OpenBMC & OpenPOWER firmware
 - Multiple hardware-enforced security options
 - PNOR write protect switch
 - Key store write protect switch
 - Flash partition write protect switches
 - BMC network disable switch

Raptor Engineering's Talos[™] system (cont.)

- Primary goals

- Allow trusted, complex general purpose computing
- Encourage development of libre low-level firmware
- Provide a viable x86 workstation alternative
- Enable innovation through OpenPOWER access

Status

- System development well underway
- Gauging overall market demand

The GPU Situation

- NVIDIA

- NVE (Kepler) and below work well under nouveau
- All cards above NVE (Kepler) are locked
- >= NV110 (Maxwell) unusable w/o signed firmware
- NVIDIA has been very slow to enable even basic nouveau functionality via signed firmware images
- NVLink (P8+ and above) requires binary drivers

- The GPU Situation
 - AMD
 - Requires unsigned firmware download to card
 - Radeon driver executes vendor ATOMBIOS
 - Libre radeonsi driver functions well
 - Lack of competition
 - Developing GPUs is expensive
 - NVIDIA has adopted anti-competitive techniques
 - Use standardized OpenCL wherever possible!

- Summary
 - x86 is familiar, but increasingly locked down
 - Alternative architectures are far more open
 - Switching from x86 is becoming a viable option
 - Libre software has enabled architecture choice
 - ARM primarily targets low end and NPU markets
 - OpenPOWER / Talos[™] target workstation and server markets

- Summary (cont.)
 - Fully libre CPUs are not currently viable
 - Most attempts have ended in failure
 - RISC-V may have chance in embedded systems
 - Major manufacturing technology developments required before GPC viability
 - Balance possible between proprietary and libre
 - Sell hardware, not firmware and software licenses
 - ARM / OpenPOWER seem to have found balance

- Summary (cont.)
 - Era of cheap, commodity GPC has ended
 - Consumer machines are cryptograpically locked
 - Consumer markets have shifted to rental / cloud
 - Libre software advocates have three choices
 - Use cheap, low-end, reverse engineered machines for as long as they remain unlocked
 - Accept loss of owner control (and libre software)
 - Pay for full featured, owner-controlled machines

- Summary (cont.)
 - OpenPOWER has re-enabled trusted GPC
 - Still needs more support from libre community
 - Trends are encouraging
 - Projects such as Talos[™] need market demand!
 - After battle for control of CPU has concluded...
 - ...battle for control of GPU begins!

Thank you for your attention!

Check out the Talos[™] Secure Workstation https://www.raptorengineering.com/TALOS/

Follow us on Twitter or GNU Social! https://twitter.com/RaptorEng https://social.raptorengineering.io/raptoreng

Additional Resources

- Platform Embedded Security Technology Revealed: Safeguarding the Future of Computing with Intel Embedded Security and Management Engine
 - http://www.apress.com/9781430265719
- Intel x86 considered harmful The Invisible Things
 - http://blog.invisiblethings.org/2015/10/27/x86_harmful.html
- Intel & ME, and why we should get rid of ME
 - https://www.fsf.org/blogs/licensing/intel-me-and-why-we-should-get-rid-of-me
- Debian archive coverage for supported machine architectures over time
 - https://buildd.debian.org/stats/graph-quarter-big.png
- OpenPOWER machine firmware
 - https://github.com/open-power

